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We report on quantitative comparisons between simulation results of a bead-spring model and mode-
coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled
polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that
occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static
structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described
in terms of monomer caging supplemented by chain connectivity. Furthermore, a unified atomistic description
of glassy arrest and of conformational fluctuations that �asymptotically� follow the Rouse model emerges from
our theory.
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I. INTRODUCTION

Polymeric melts can often be cooled down easily to vit-
rify into disordered solids. It is an important challenge for
first-principles approaches to develop an understanding of
this technologically important process. In polymer science a
further important challenge is to derive well-known models
of chain transport and relaxation in melts �1�. In a melt,
excluded volume interactions and chain connectivity cause
subdiffusive segment motion, �approximately� described by
the Rouse and reptation models, which consider a single
chain in an effective field �2�. The challenge consists in de-
riving these models from microscopic interactions.

In this paper, we propose an atomistic interpretation of the
structural and conformational dynamics of a bead-spring
model for an unentangled polymer melt �3,4� by quantita-
tively comparing simulation and first-principles calculations.
On the one hand, this explains the onset of the viscous slow-
ing down, ultimately leading to kinetic arrest into an amor-
phous solid �the glass transition� �5–8�. On the other hand,
we find Rouse-like motion for very large chain length N, and
also explain characteristic deviations from pure Rouse be-
havior for finite N. Our theory does not describe entangle-
ments �9� because we start from isotropic, correlated mono-
mer collisions which give rise to the “cage effect” in dense
fluids, but vanish in the limit of infinitely thin chains where
only topological constraints �entanglements� are present. We
aim to describe fundamental consequences of the local steric
packing in dense melts of flexible polymers and thus, in a
first step, neglect chemical structure like torsional degrees of
freedom; for simulation studies of the glass transition using
chemically realistic models, see, e.g., Refs. �6,7,10�.

Our approach is based on an extension of the mode-
coupling theory �MCT� for the glass transition �11� to poly-
mer systems. MCT predicts structural arrest—also referred to
as the idealized liquid-glass transition—driven by the mutual
blocking of a particle and its neighbors at a critical tempera-
ture Tc which is located above the glass-transition tempera-

ture Tg. Although complete structural arrest at Tc is not ob-
served in experiments and simulations, extensive tests of the
theory carried out so far above Tc suggest that MCT deals
properly with some essential features of the structural relax-
ation in glass-forming liquids �12,13�.

Our extension of the MCT to polymer systems will be
done following the site formalism �14�. In this formalism,
each polymer molecule is divided into interaction sites, cor-
responding to monomers or segments, and the dynamics as
well as the static structure of polymers are characterized by
site-site correlation functions. For chains consisting of N
monomers, the site-site correlation functions comprise O�N2�
elements, and handling them is a formidable task for long
chains. A key assumption of our atomistic theory �15� is the
replacement of the site-specific intermolecular surroundings
of a monomer by an averaged one �equivalent-site approxi-
mation �14,15��, while keeping the full intramolecular site
dependence. For the statics this approximation has been veri-
fied by simulation for wavelengths around the average seg-
ment separation for a bead-spring model of a polymer melt
�16�. Here we extend the test by presenting a quantitative
comparison of the theory for collective and single-chain dy-
namics with molecular-dynamics �MD� simulations. This test
requires as only input the average static structure factor S�q�,
the average intrachain structure factor w�q�, and the site-
resolved intrachain structure factors wab�q� to be defined be-
low. These quantities are directly determined from the simu-
lation �16�. Such a fully quantitative comparison has been
done only recently, even for systems of simpler constituents
�17�. It is motivated by successful MCT fits of the simulation
data for our model �4�.

It might be appropriate at the start to summarize the phi-
losophy of our approach for developing an atomistic theory
of the slow structural dynamics in polymer melts, combining
simulation and MCT. We aim to derive first-principles results
for measurable quantities like intermediate scattering func-
tions and mean-square displacements. Within MCT, such av-
eraged information on the structural relaxation can be ob-
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tained from equilibrium structural input up to a single
unknown parameter, the time scale parameter, which needs
to be found by matching theory and simulation at one time
instant �we will choose the final relaxation time of density
fluctuations at the wavelength corresponding to the average
segment separation for this purpose�. We argue that quanti-
ties obtained by averaging, assuming homogeneity, should be
studied first to characterize macromolecular motion, post-
poning consideration of heterogeneities and molecular or
segmental variations to future, more detailed studies. A cen-
tral question of our investigation—besides whether such an
approach is feasible at all—is what static information is re-
quired or sufficient to explain key features of macromolecu-
lar motion. Therefore, we consider a simple polymer model
without chemical detail for which the required static input
can be obtained with high precision, and the theoretical pre-
dictions for the dynamics, calculated without adjustable pa-
rameters, can be compared with simulation results �17�. We
expect to uncover fundamental mechanisms also present in
real polymer melts, for which, however, more complex static
information than is necessary here might be required as input
to a theory for the dynamics.

The paper is organized as follows. Section II introduces
the model polymer system to be considered in the present
paper. In Sec. III, we briefly review static properties of the
model. Implications from the analysis of the static properties
will be employed in Sec. IV to develop a tractable theory for
polymer dynamics. In Sec. V, theoretical predictions on
structural and conformational dynamics of the model are
compared with simulation results. The paper is summarized
in Sec. VI with some concluding remarks. Appendix A is
devoted to the derivation of the basic equations of motion,
and Appendix B to the derivation of the Rouse model based
on our microscopic approach.

II. MODEL

We study a bead-spring model of linear chains, each con-
taining N=10 monomers of mass m �3,4,8,18�. This is a
model for highly flexible polymers, and is among the sim-
plest models exhibiting glassy arrest and polymer specific
dynamic anomalies. All monomers interact via a truncated
and shifted Lennard-Jones �LJ� potential

ULJ�r� = �4�LJ���LJ/r�12 − ��LJ/r�6� + C , r � 2rmin,

0, r � 2rmin.
�

�1�

In the following, all the quantities are expressed in LJ units
with the unit of length �LJ, the unit of energy �LJ �setting
Boltzmann’s constant kB=1�, and the unit of time
�m�LJ

2 /�LJ�1/2. The constant C=127 /4096 is chosen so that
ULJ�r� vanishes continuously at r=2rmin with rmin=21/6 being
the minimum position of the nontruncated potential. In addi-
tion, successive monomers in a chain interact via a finitely
extensible nonlinear elastic �FENE� potential �19�

UFENE�r� = −
k

2
R0

2 ln�1 − � r

R0
	
 , �2�

with R0=1.5 and k=30. The superposition of the LJ and
FENE potentials leads to a steep effective bond potential
with a sharp minimum at rb=0.9606.

For this model we carried out MD simulations of polymer
melts at constant pressure p and constant temperature T.
�The polymer melts comprise 100–120 chains, depending on
temperature.� The MD simulations were performed in two
steps �3,8�. For each T, the volume of the simulation box is
first determined in an isobaric simulation at p=1. Then, this
volume is kept fixed and the simulations are continued in the
canonical ensemble using the Nosé-Hoover thermostat. �The
choice of this thermostat does not influence the relaxation
dynamics of the melt �3,8�.� The simulations were carried out
for the temperature range 0.47�T�1, corresponding to
monomer densities 0.91��m�1.04. The lowest simulated
temperature is slightly above Tc

MD�0.45, the MCT critical
temperature as determined from the MD simulation �cf. Sec.
IV D�. Before all measurements, each state point �T ,�m� is
fully equilibrated �the chains are allowed to diffuse several
times over the distance corresponding to their radius of gy-
ration�. For each state point, all quantities are averaged over
150–200 independent time origins. A more detailed descrip-
tion of the simulation technique and simulation results for
the model can be found in Refs. �3,4,8,18�.

III. SUMMARY OF STATIC PROPERTIES

The static structural and conformational properties of our
model have been analyzed in detail in Ref. �16�. In this sec-
tion, we briefly review some of the main results of Ref. �16�,
which help us to develop a tractable theory for polymer dy-
namics.

A. Static structure factors

Let us consider a polymer melt of n chains, consisting of
N identical monomers, in a volume V. We denote by �
=n /V the chain density. The static collective density fluctua-
tions at the monomer level can most naturally be character-
ized by the monomer-monomer �or site-site� static structure
factors

Sab�q� =
1

n
��a�q���b�q�
 , �3�

defined in terms of the coherent monomer density fluctua-
tions for wave vector q,

�a�q� = �
i=1

n

exp�iq · ri
a� �a = 1, . . . ,N� . �4�

Here �·
 denotes the canonical averaging for temperature T,
and ri

a represents the position of the ath monomer in the ith
chain. Since the melt is spatially homogeneous and isotropic,
the structure factors depend only on the modulus of the wave
vector, q= �q�. One can split Sab�q� into intrachain and inter-
chain parts,
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Sab�q� = wab�q� + �hab�q� , �5�

in which the intrachain contribution is given by

wab�q� =
1

n��
i=1

n

exp�− iq · �ri
a − ri

b��� , �6�

and the interchain contribution by

�hab�q� =
1

n��
i�j

n

exp�− iq · �ri
a − r j

b��� . �7�

These contributions reveal static correlations between mono-
mers belonging to the same chain or to different chains, re-
spectively.

Commonly, not these site-resolved quantities, but struc-
ture factors averaged over all monomer pairs �a ,b� are dis-
cussed. For instance, we obtain the collective structure factor
of the melt by

S�q� �
1

N
�

a,b=1

N

Sab�q� =
1

nN
��tot�q���tot�q�
 , �8�

which can be represented in terms of the total monomer den-
sity fluctuations �the second equality in the above equation�,

�tot�q� � �
a=1

N

�a�q� = �
i=1

n

�
a=1

N

exp�iq · ri
a� . �9�

The average S�q� can also be decomposed into intrachain and
interchain parts,

S�q� = w�q� + �mh�q� , �10�

where �m=N� denotes the monomer density, and

w�q� =
1

N
�

a,b=1

N

wab�q�, h�q� =
1

N2 �
a,b=1

N

hab�q� . �11�

The intrachain contribution w�q� is often called the “form
factor” in the polymer literature �2,20�.

Figure 1 shows the simulation results for S�q� of our
model at T=0.47, 0.70, and 1, which are representative tem-
peratures in the investigated range 0.47�T�1.0. In this T
interval, the collective structure of the melt is typical of a
dense disordered system. Due to the weak compressibility of
the melt, S�q� is small in the q→0 limit. As q increases, S�q�
increases toward a maximum, which occurs around q�=6.9
in our model. The corresponding length scale 2� /q� is asso-
ciated with the average segment separation, which is of the
order of the effective monomer diameter �=1 in the reduced
units�. Thus, the dominant contribution to S�q�� comes from
the amorphous packing in neighbor shells around a mono-
mer. Upon lowering T, Fig. 1 indicates that the packing be-
comes tighter, which is reflected by the increased height of
the peak S�q�� and by the shift of its position q� to larger
values. Such changes of S�q� at q�q� reflect the interchain
correlations since the intrachain structure factor w�q� was
found to be nearly T independent �16�.

In addition to monomer density fluctuations, the static
spatial arrangement of the center of mass �c.m.� of chains

and its T dependence might be of interest. The c.m.-c.m.
static structure factor is defined by

SC�q� =
1

n��
i,j=1

n

exp�− iq · �Ri − R j��� , �12�

where Ri denotes the c.m. position of the ith chain. The inset
of Fig. 1 shows the simulation result for SC�q�. It is seen that
SC�q� is fairly featureless: outside the small-q regime reflect-
ing the low compressibility of the melt, SC�q� quickly ap-
proaches the ideal gas behavior, SC�q�=1. There is a tiny
peak at qC�3.4, whose height is, in contrast to that of S�q�,
practically T independent.

One understands from Fig. 1 that the most pronounced T
dependence in the static structure occurs in S�q� around q�

which reflects interchain monomer correlations. This implies
that the slowing down of the dynamics of our model upon
lowering T cannot result from static c.m.-c.m. or intrachain
correlations, but should be driven by interchain correlations
at the monomer level, i.e., by the nearest neighbors that are
not directly bonded to each other. As we will see, this is one
of the principal predictions of our theory, according to which
the coherent dynamics close to q� enslaves all other dynam-
ics, including the c.m. and single-chain conformational dy-
namics.

B. Equivalent-site approximation

In Ref. �16�, particular attention was paid to the depen-
dence of static correlation functions on the position of the
monomer along the chain backbone to understand to what
extent specific monomer-monomer correlations deviate from
the average behavior. Since the site-site static correlation
functions are necessary input quantities for the mode-
coupling approach based on the site formalism, the compari-

0.0
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4.0

0 5 10 15 20

0.0

0.5

1.0q*

0 2 4 6 8

qC

S(q)

S (q)C

q

q

FIG. 1. �Color online� Collective static structure factor S�q� of
the melt as a function of the modulus of the wave vector q for
temperatures T=0.47 �solid line�, 0.70 �dashed line�, and 1 �dotted
line�. S�q� exhibits a maximum around q�=6.9 whose position is
indicated by an arrow. The inset shows SC�q�, the static structure
factor of the chain’s center of mass, for T=0.47, 0.70, and 1. There
is practically no temperature dependence in SC�q�, and the three
curves cannot be distinguished from each other. SC�q� exhibits a
weak maximum at qC=3.4 whose position is indicated by an arrow.
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son of the monomer-monomer correlation functions with
their monomer-averaged counterparts can suggest suitable
approximations and thus help develop a tractable theory. In
this and the next subsections, we summarize such approxi-
mations, which will be employed in Sec. IV.

Let us introduce the site-site direct correlation function
cab�q� via the site-site Ornstein-Zernike equation �21�

hab�q� = �
x,y=1

N

wax�q�cxy�q��wyb�q� + �hyb�q�� . �13�

This is a generalized Ornstein-Zernike equation in which in-
trachain correlations are accounted for through wab�q�; it also
serves as the defining equation of the direct correlation func-
tion in terms of wab�q� and Sab�q�,

�cab�q� = wab
−1�q� − Sab

−1�q� . �14�

Here Xab
−1�q� �X=w or S� denotes the �a ,b� element of the

inverse of the matrix X�q�.
The difficulty in dealing with the site-site correlation

functions arises from the dependence on the indices �a ,b�.
Such functions consisting of O�N2� elements cannot easily
be handled for large N. One can argue, however, that, for
long polymers, chain end effects for interchain correlation
functions should be small, suggesting that all sites of a ho-
mopolymer can be treated equivalently. �This simplification
is exact for a ring homopolymer.� This equivalent-site ap-
proximation is usually invoked for cab�q�, i.e.,

c�q� = cab�q� �equivalent-site approximation� . �15�

Equation �15� represents the principal idea of the polymer
reference interaction site model �PRISM� theory developed
by Schweizer, Curro, and co-workers �14�.

Substituting Eq. �15� into Eq. �13� and then taking the
summation �a,b of the resulting equation, one gets the fol-
lowing scalar equation, called the PRISM equation, in terms
of the averaged quantities defined in Eq. �11�:

h�q� = w�q�c�q��w�q� + �mh�q�� . �16�

Equation �16� provides the following expression for c�q�:

�mc�q� = 1/w�q� − 1/S�q� , �17�

in terms of the average w�q� and S�q�.
The validity of the equivalent-site approximation �15� has

been examined for our model by comparing cab�q� obtained
from Eq. �14� with c�q� from Eq. �17�, with the quantities on
the right-hand sides of these equations directly determined
from simulations �see Fig. 5 of Ref. �16��. It has been dem-
onstrated that the approximation is well satisfied, except for
functions involving the chain ends. This result suggests that,
for our model, a theory for the melt dynamics can be derived
by assuming Eq. �15� without introducing a large error �22�.

C. Additional ring approximation

Besides cab�q�, the static structure factors Sab�q� are nec-
essary input quantities for the MCT based on the site formal-
ism �see Sec. IV�. Thus, the equivalent-site approximation

�15� alone is insufficient to obtain a tractable theory since the
specific monomer-position dependence still remains in
Sab�q�. This is obvious in view of the following relation:

Sab�q� = ��I − �w�q�c�q��−1w�q��ab, �18�

which can be derived from Eqs. �5� and �13�. Here I denotes
the unit matrix. Thus, even with the assumption cab�q�
=c�q�, a site dependence of Sab�q� results from chain con-
nectivity, i.e., from the matrix structure of wab�q�. Therefore,
it is desirable to have an additional approximation which
simplifies the treatment of Sab�q�.

Remembering that the equivalent-site approximation �15�
is exact for a ring polymer, we will derive an additional
approximation for linear chains based on another exact rela-
tion for rings. We will then examine the validity of this ap-
proximation in our simulation.

A prominent feature of the site-site structure factor for a

ring polymer is that S̃a�q���b=1
N Sab�q� is independent of a,

and the relation S̃a�q�= �1 /N��a=1
N S̃a�q�=S�q� holds; the sec-

ond equality follows from Eq. �8�. Furthermore, from the

identity �x,bSax
−1�q�Sxb�q�=1, we also have S̃a

−1�q�
��b=1

N Sab
−1�q�=1 /S�q�. In view of these exact relations for a

ring polymer, let us introduce the following approximations
for linear chains:

S̃a�q� � �
b=1

N

Sab�q� � S�q� , �19�

S̃a
−1�q� � �

b=1

N

Sab
−1�q� �

1

S�q�
. �20�

0 5 10 15 20
q

0.0

1.0

2.0

3.0

4.0

S(q)
a=1
a=2
a=5

0 5 10 15 20
0
1
2
3
4

FIG. 2. �Color online� Comparison of the static structure factor

S�q� �circles� with the site-dependent static structure factors S̃a�q�
for a=1 �dashed line�, 2 �solid line�, and 5 �dotted line�. The inset

compares S�q� �circles� with 1 / S̃a
−1�q� for a=1 �dashed line�, 2

�solid line�, and 5 �dotted line�. �The dotted lines for a=5 in the
main panel and in the inset are not clearly visible since they almost

agree with the solid lines for a=2.� S̃a�q� and S̃a
−1�q� are defined by

the first equality of Eqs. �19� and �20�, respectively. S�q�, S̃a�q�, and

S̃a
−1�q� are taken from the simulation at T=0.47.
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Figure 2 and its inset examine to what extent the ring
approximations �19� and �20� hold for our model. It is seen

that, except for S̃1�q� and S̃1
−1�q� referring to the end mono-

mer, the ring approximation is well satisfied, suggesting that
this additional approximation can also be used in deriving a
theory for polymer dynamics without introducing a large er-
ror. Let us add that both the equivalent-site and ring approxi-
mations have been found to hold well also for the liquid
structure of some semiflexible polymer models �23�.

IV. THEORY

A. MCT equations for coherent structural dynamics

In the site formalism, collective structural dynamics are to
be described by site-site density correlators

Fab�q,t� =
1

n
��a�q��eiLt�b�q�
 �a,b = 1, . . . ,N� , �21�

whose initial values are the static structure factors Sab�q�
=Fab�q ,0�. Here, L denotes the Liouville operator appropri-
ate for Newtonian dynamics. MCT equations of motion for
Fab�q , t� for general flexible molecules are derived in Appen-
dix A, and consist of the Zwanzig-Mori exact equation of
motion and an approximate expression for the memory ker-
nel. The former is obtained by introducing a projection op-
erator P onto the monomer-density fluctuations and the cor-
responding longitudinal current fluctuations, and reads �see
Eq. �A6��

�t
2Fab�q,t� + �

x=1

N

�ax
2 �q�Fxb�q,t�

+ �
x=1

N �
0

t

dt�Max�q,t − t���t�Fxb�q,t�� = 0. �22�

Here �ab
2 �q� represents the characteristic frequency given by

�ab
2 �q� = q2v2Sab

−1�q� , �23�

with v2=kBT /m �=T in the reduced units� denoting the
monomer thermal velocity, and a formally exact expression
for the memory kernel reads

Mab�q,t� =
1

nv2 �fa�q��exp�iQLQt�fb�q�
 , �24�

in terms of the fluctuating random force fa�q� which evolves
with the generator QLQ, where Q�1−P. An approximate
expression for fa�q� as derived under the mode-coupling ap-
proach in Appendix A is given by �omitting the irrelevant
factor −i from Eq. �A21��

fa�q� =
�v2

n
�
k

�
x=1

N

�q̂ · k�cxa�k��x�k��a�p� , �25�

in which q̂=q /q and p=q−k. With the use of the factoriza-
tion approximation �A13�, one finally arrives at the following
MCT expression for the kernel �see Eq. �A22��:

Mab�q,t� =
�v2

�2��3 �
x,y=1

N � dk��q̂ · k�2cax�k�cby�k�Fxy�k,t�

	Fab�p,t� + �q̂ · k�

	�q̂ · p�cax�k�cby�p�Fxb�k,t�Fay�p,t�� . �26�

Equations �22� and �26� provide a set of closed equations for
determining site-site coherent density correlators Fab�q , t�,
provided the static quantities Sab�q� and cab�q� are known.
From a computational point of view, however, it is quite
demanding to solve these N	N matrix equations, since N
may become large for polymeric systems �24�. It is at this
point where the analysis of the static properties, presented in
Ref. �16� and summarized in Sec. III, will help us to develop
further approximations.

As mentioned in Sec. III B, the equivalent-site approxi-
mation cab�q�=c�q� is well justified for our model. So, we
insert cab�q�=c�q� in Eq. �25� and obtain

fa�q� =
�v2

n
�
k

�q̂ · k�c�k��tot�k��a�p� , �27�

where �tot�k� denotes the total monomer density fluctuations
introduced in Eq. �9�. This expression reveals that the
equivalent-site approximation alone does not suffice to sim-
plify the problem: the dependence of fa�q� on the monomer
position remains, and the resulting Mab�q , t� still carries the
�a ,b� dependence, i.e., it consists of O�N2� elements. Fur-
thermore, no simplification is yet achieved concerning the
frequency matrix �23�.

Progress is made if we invoke the second approximation
described in Sec. III C. The frequency term �23� can be sim-
plified by the use of the ring approximation �20� to

�
a=1

N

�ab
2 �q� = q2v2�

a=1

N

Sab
−1�q� � q2v2/S�q� � �2�q� . �28�

A corresponding simplification can be introduced for the
fluctuating force fa�q�. To this end, we notice that fa�q� in
Eq. �27� originates from interchain interactions represented
through the direct correlation function. It is then reasonable
to expect that, for long chains, the specific monomer-position
dependence in fa�q� is small, and can be well approximated
by an averaged one. �This approximation is exact for rings.�
We therefore introduce an approximation

fa�q� �
1

N
�
a=1

N

fa�q� . �29�

This ring approximation replaces the site-specific surround-
ings of a monomer by an averaged one, and then the fluctu-
ating force is given by

fa�q� =
�v2

nN
�
k

�q̂ · k�c�k��tot�k��tot�p� . �30�

This leads to an expression for Mab�q , t� �to be summarized
below� which now does not depend on the site indices �a ,b�.
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The approximations discussed so far allow us to derive a
set of closed MCT equations for the collective total mono-
mer density correlators

F�q,t� �
1

N
�

a,b=1

N

Fab�q,t� =
1

nN
��tot�q��eiLt�tot�q�
 , �31�

whose initial value is F�q ,0�=S�q� �see Eq. �8��. To this end,
we take �1 /N��a,b of Eq. �22�, and then insert the frequency
term �28� and the memory kernel with the fluctuating force
given in Eq. �30� under the factorization approximation
�A13�. This gives the following set of MCT equations for the
normalized coherent density correlators 
�q , t�
�F�q , t� /S�q�:

�t
2
�q,t� + �2�q�
�q,t� + �2�q��

0

t

dt�m�q,t − t���t�
�q,t��

= 0, �32�

m�q,t� =
1

2
� dk V�q;k,p�
�k,t�
�p,t� . �33�

Here �2�q�=q2v2 /S�q�, and the vertex function reads

V�q;k,p� =
�m

�2��3q2S�q�S�k�S�p��q̂ · �kc�k� + pc�p���2.

�34�

One can solve these equations for 
�q , t� provided the aver-
age static quantities S�q� and c�q� are given as input.

Equations �32� and �33� merit some comments. �i� These
equations are formally identical to MCT equations for mon-
atomic liquids. Polymer-specific effects, such as local stiff-
ness of the chain backbone or chain length N, enter the re-
laxation only via the direct correlation function c�q�, the
structure factor S�q�, and the monomer density �m. These
static equilibrium features fully determine the long-time co-
herent dynamics of the melt. �ii� Equations �33� and �34�
indicate that the memory kernel contains the factor
S�q�S�k�S�p�. So the slow dynamics upon lowering T should
be mainly driven by wave vectors close to q� because there,
S�q� is largest and the strongest dependence on T occurs �see
Sec. III B�. Thus, our theory predicts that the glassy struc-
tural slowing down is connected to the increase of the first
peak of S�q�, i.e., to the local cage effect.

We finally notice that the so-called regular contribution to
the memory kernel �11� is discarded in our theory, and our
approximate memory kernel is completely given by the
mode-coupling expression. The latter provides the slow con-
tribution relevant for the structural slowing down. The regu-
lar contribution is supposed to embody memory effects al-
ready present in the normal high-T state of liquids, and
accounts for the fast dynamics in the short-time regime. We
drop the regular contribution since it does not affect the
MCT predictions for the slow-relaxation regime �11,25�.
Thus, care has to be taken in comparing theoretical predic-

tions with simulation results, since the theory without the
regular contribution does not properly describe the short-
time dynamics �26�.

B. MCT equations for single-chain dynamics

The basic variable characterizing the dynamics of a single
�or tagged� chain is

�a
s�q,t� = eiq·rs

a�t�, �35�

where rs
a�t� denotes the position of the ath monomer in the

tagged �labeled s� chain at time t. The density correlator for
the single-chain dynamics is defined by

Fab
s �q,t� = ��a

s�q���b
s�q,t�
 , �36�

whose initial value is the intrachain structure factor wab�q�
=Fab

s �q ,0�.
The derivation of the MCT equations for Fab

s �q , t� is out-
lined in Appendix A 3, and the resulting matrix equations can
be summarized as

�t
2Fab

s �q,t� + �
x=1

N

�ax
s2�q�Fxb

s �q,t� + �
x,y=1

N

�ax
s2�q��

0

t

dt�mxy
s

	�q,t − t���t�Fyb
s �q,t�� = 0, �37�

where the frequency matrix is given by

�ab
s2�q� = q2v2wab

−1�q� , �38�

and the MCT expression for mab
s �q , t� under the equivalent-

site approximation �15� reads

mab
s �q,t� = �

x=1

N

wax�q�� dk Vs�q;k,p�Fxb
s �k,t�
�p,t� ,

�39�

with the vertex function

Vs�q;k,p� =
�m

�2��3q2S�p��q̂ · p�2c�p�2. �40�

Equations �37� and �39� constitute a set of closed
�N	N�-matrix MCT equations for the single-chain density
correlators Fab

s �q , t�. One can solve these equations with
knowledge of the static quantities—S�q�, c�q�, and
wab�q�—and of the coherent density correlators 
�q , t�. It is
clear from Eq. �39� that the slowing down of the single-chain
dynamics is driven by that of the coherent dynamics.

Unlike the MCT equations for the coherent dynamics, one
cannot simplify the matrix structure of Eqs. �37�–�39� for the
single-chain density correlators Fab

s �q , t� in order to properly
describe chain-connectivity effects, taken into account
through the intrachain structure factor matrix wab�q�. For ex-
ample, one needs the site-site Fab

s �q , t� to fully describe the
chain conformational dynamics, i.e., all the Rouse-mode cor-
relators introduced below, and has to solve the matrix MCT
equations �37� and �39� for this purpose. Let us note in this
connection that, from a computational point of view, it is not
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so demanding to solve these matrix MCT equations for
Fab

s �q , t�. This is because the most time-consuming part in
numerically solving the MCT equations is spent in solving
the ones for coherent dynamics �27�.

C. MCT equations for Rouse-mode correlators

In this section, the site-density description of the single-
chain dynamics will be related to the traditional Rouse de-
scription, and we derive the MCT equations for the Rouse-
mode correlators. Let us stress that the present rewriting is
exact and always possible. The N degrees of freedom of
segmental motion are mapped onto N modes labeled by p. If
the Rouse model holds, the modes will be statistically inde-

pendent and the matrix of Rouse-mode correlators intro-
duced below becomes diagonal.

Let us introduce the following N	N orthogonal matrix
Pap �a=1,2 , . . . ,N and p=0,1 , . . . ,N−1�:

Pap = ��
1

N
, �p = 0� ,

� 2

N
cos� �a − 1/2�p�

N
	 , �p = 1,2, . . . ,N − 1� .�

�41�

The Rouse-mode vectors will be defined in terms of the
monomer positions as Xp�t�=�a=1

N Paprs
a�t� �28�, i.e.,

Xp�t� = ��
1

N
�
a=1

N

rs
a�t� , �p = 0� ,

� 2

N
�
a=1

N

rs
a�t�cos� �a − 1/2�p�

N
	 , �p = 1,2, . . . ,N − 1� .� �42�

The inverse relation is given by rs
a�t�=�p=0

N−1PapXp�t�:

rs
a�t� =� 1

N�X0�t� + �2�
p=1

N−1

Xp�t�cos� �a − 1/2�p�

N
	
 . �43�

We introduce the Rouse-mode correlators as

Cpp��t� = ���X0�0� · X0�t�
 − �X0�0� · X0�0�
�/3N , �p = p� = 0� ,

��X0�0� · Xp��t�
 − �X0�0� · Xp��0�
�/3N , �p = 0,p� � 0� ,

�Xp�0� · Xp��t�
/3N , �p � 0,p� � 0� .
� �44�

From the definition, it is obvious that

C00�0� = 0, C0p�0� = 0 for p � 0. �45�

Let us introduce the following �N−1�	 �N−1� matrix to de-
note the initial values of Cpp��t� for p , p��0:

Ĉpp� � Cpp��0� defined only for p,p� � 0. �46�

It is necessary to introduce this new matrix in order to dis-
cuss the inverse matrix of Cpp��0�: the inverse of the N	N
matrix Cpp��0� does not exist because of Eq. �45�, whereas

that of the �N−1�	 �N−1� matrix Ĉpp� does exist, and will

be denoted as Ĉpp�
−1 .

Since X0�t�=�NRs�t� with Rs�t� denoting the c.m. posi-
tion of the tagged chain at time t, C00�t� is related to the c.m.
mean-square displacement �MSD� gC�t�= ��Rs�t�−Rs�0��2
:

gC�t� = − 6C00�t� . �47�

For the monomer MSD ga�t�= ��rs
a�t�−rs

a�0��2
, it follows
from Eqs. �43� and �44� that

ga�t� = gC�t� − 12�2 �
p�=1

N−1

C0p��t�cos� �a − 1/2�p��

N
	

+ 12�
p=1

N−1

�
p�=1

N−1

�Cpp��0� − Cpp��t��

	cos� �a − 1/2�p�

N
	cos� �a − 1/2�p��

N
	 . �48�

In particular, one gets for the MSD averaged over all the
monomers in a chain

gM�t� � �1/N��
a=1

N

ga�t� = gC�t� + 6�
p=1

N−1

�Cpp�0� − Cpp�t�� .

�49�

We next consider how the Rouse-mode correlators Cpp��t�
are related to the site-density correlators Fab

s �q , t�. This will
allow us to write down MCT equations for the former based
on the ones for the latter. Since the density fluctuations of the
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tagged chain for small q are given by �a
s�q , t��1+ iq ·rs

a�t�,
it is easily understood that Cpp��t� can be expressed as a
linear combination of Fab

s �q , t� for q→0. Indeed, one can
show that

1

N
�

a,b=1

N

PapFab
s �q → 0,t�Pbp�

= �1 + q2�C00�t� − A� + O�q4� , �p = p� = 0� ,

q2�C0p��t� − Bp�� + O�q4� , �p = 0,p� � 0� ,

q2Cpp��t� + O�q4� , �p,p� � 0� ,
�
�50�

where A= �1 /6N2��a,b=1
N ��rs

a−rs
b�2
=Rg

2 /3 with Rg denoting
the radius of gyration of a chain, and Bp
= �1 /3�2N2��a,b=1

N ��rs
a−rs

b�2
cos��b−1 /2�p� /N�. Using
these relations, one derives the following MCT equations for
Cpp��t� by taking the q→0 limit of Eqs. �37�–�40�:

�t
2Cpp��t� + v2Dpp� + v2 �

p�=0

N−1

Epp�Cp�p��t�

+ v2 �
p�=0

N−1 �
0

t

dt�mpp��t − t���t�Cp�p��t�� = 0, �51�

where

Dpp� = �p0�p�0/N , �52�

Epp� =�Ĉpp�
−1 /N , �p,p� � 0� ,

0 otherwise.
� �53�

and the expression for the memory kernel reads

mpp��t�

=
�m

6�2� dk k4S�k�c�k�2� �
a,b=1

N

PapFab
s �k,t�Pbp�	
�k,t� .

�54�

These MCT equations for Cpp��t� can be solved provided the

static quantities—S�q�, c�q�, wab�q�, and Ĉpp�—and the full
site-site single-chain density correlators Fab

s �q , t� as well as
the coherent density correlators 
�q , t� are known. MSDs
can then be obtained from Eqs. �47�–�49�. Again, it is clear
from Eq. �54� that the slowing down of the Rouse-mode
dynamics and MSDs is dictated by that of the coherent dy-
namics. In Appendix B, we will show how the Rouse model
emerges from our MCT equations in the asymptotic limit of
large N.

D. Universal MCT predictions

Here, we briefly summarize some universal MCT predic-
tions which are necessary for understanding the present pa-
per. As described in Ref. �29�, all universal results concern-
ing the MCT-liquid-glass transition dynamics, originally

developed for simple systems �11�, are also valid for molecu-
lar systems, and the MCT for polymer melts developed in
Sec. IV shares this feature. This justifies the use of the MCT
universal predictions in analyzing polymer data, whose va-
lidity has been tacitly assumed in previous studies of our
model �4,8,30�.

One of the central predictions of MCT is the existence of
a critical temperature Tc. The long-time limit, or the noner-
godicity parameter, of the coherent density correlator f�q�
�
�q , t→
� obeys the implicit equation

f�q�
1 − f�q�

= Fq�f� , �55�

which can be derived by taking the t→
 limit of Eqs. �32�
and �33� and introducing the mode-coupling functional
Fq�f���1 /2��dk V�q ;k ,p�f�k�f�p�. One gets trivial solu-
tions f�q�=0 for T�Tc, meaning that the density fluctuations
relax completely at long times, a characteristic feature of the
ergodic liquid state. On the other hand, nontrivial solutions
f�q��0 can be obtained for T�Tc, describing nonergodic
dynamics in which density fluctuations cannot fully decay.
The nonergodicity parameter f�q� measures the “solidity” of
such an amorphous solid on length scales �2� /q, and is
thus also referred to as the glass form factor or the Debye-
Waller factor. The ergodic-to-nonergodic transition at Tc is
called the idealized glass transition, and f�q� at T=Tc, to be
denoted as fc�q�, is referred to as the critical nonergodicity
parameter. It also has the meaning of the plateau height in
the two-step relaxation of 
�q , t�, and quantifies the strength
of its � relaxation �see below�.

MCT predicts that for temperatures close to but above Tc,
to which we restrict our attention in the following, the dy-
namics of any time-dependent correlation function 
X�t�
coupling to density fluctuations exhibits a two-step relax-
ation: the relaxation toward the plateau, and the final relax-
ation from the plateau to zero. These relaxations are respec-
tively characterized by the time scales t� and t�� defined by

t� = t0/����, � = 1/2a , �56�

t�� = t0B−1/b/����, � = �1/2a� + �1/2b� . �57�

Here t0 denotes some microscopic time scale �31�. � is called
the separation parameter, and measures the distance from the
critical point:

� = C�, � = �Tc − T�/Tc. �58�

Except for t0, all the exponents and the constants B and C
appearing in these equations can be evaluated from the
mode-coupling functional Fq�f� with the knowledge of fc�q�
�11,32�. According to MCT, the dynamics dramatically slows
down upon lowering T since the time scales t� and t�� diverge
for T→Tc+. The two-step-relaxation scenario emerges since
the T dependence of t�� is stronger than that of t�.

The dynamics that occurs near the plateau is referred to as
the � process. The height of the plateau is given by the
critical nonergodicity parameter fX

c of the correlator 
X�t�,
which can be determined from the corresponding mode-
coupling functional via an equation analogous to Eq. �55�.
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MCT predicts that there holds for �→−0 �i.e., for T→Tc+�


X�t� = fX
c + hX

����g�t/t�� + O��� . �59�

Here hX is called the critical amplitude and g�t̂� the � cor-
relator �11�. Equation �59� is called the factorization theo-
rem, according to which the dependence of the correlator

X�t� on X �e.g., the wave number� represented through hX is
factored from the temperature and time dependence de-
scribed by ����g�t / t��.

The decay of 
X�t� down from the plateau fX
c is called the

� process. For this process, MCT predicts for �→−0


X�t� = 
̃X�t/t��� , �60�

which is also referred to as the superposition principle. The
temperature-independent shape function 
̃X�t̃�—referred to
as the � master function—is to be evaluated from the MCT
equations at T=Tc, and the temperature dependence is given
via the time scale t�� introduced in Eq. �57�. The initial part of
the � process is given by the von Schweidler law 
X�t�= fX

c

−hX�t / t���b �11�. The superposition principle implies that the
� relaxation time �X of any dynamical variable, defined, e.g.,
via the convention 
X��X�=0.1 which will be employed in
this paper, is proportional to t�� , i.e.,

�X = CXt�� . �61�

This implies that the unspecified microscopic time scale t0,
which is common to all dynamical quantities, can be elimi-
nated by choosing a particular variable X, e.g., the collective
density correlator 
�q , t� at the structure factor peak position
q�, and then plotting other quantities as a function of t /�q�

where �q� denotes the � relaxation time of 
�q� , t�.
For our model, the mentioned MCT universal predictions

have been successfully applied to analyze simulation data,
from which various characteristic quantities have been ex-
tracted �4,8,30�. For example, the critical temperature Tc

MD

�0.45 was obtained from the consistent analysis of both �
and � relaxations. Critical nonergodicity parameters have
been determined for several correlators by applying Eq. �59�,
including its leading correction �32�, in the � regime. These
simulation results can directly be compared with our first-
principles theoretical calculations.

In addition, and more importantly, our microscopic theory
developed here can make predictions concerning polymer-
specific features which are outside the scope of the universal
MCT predictions. Through the comparative study of such
first-principles theoretical predictions and simulation results,
we will propose an atomistic interpretation of the slow struc-
tural and conformational dynamics of supercooled polymer
melts.

V. RESULTS AND DISCUSSION

A. Collective structural dynamics

We start by comparing theoretical and simulation results
for the critical glass form factors fc�q� of the coherent den-
sity correlators 
�q , t�. The theoretical result for fc�q� can be
obtained by solving Eq. �55� provided static inputs at Tc

MCT

are known. �Tc determined from the theory based on the
analysis of Eq. �55� will be denoted as Tc

MCT to discriminate
it from Tc

MD obtained from previous analyses �4,8� of the
simulation data.� If Tc

MCT lies in the range of temperatures for
which simulation results are available, the static inputs at
Tc

MCT can be determined accurately. However, a problem
arises if Tc

MCT is found to be below the lowest simulated T.
This was the case in our study. �See Sec. VI for a possible
explanation.� So we had to estimate the required static input
by a linear extrapolation based on the simulated S�q� at T
=0.47 and 0.48. �No extrapolation was necessary for static
intrachain correlation functions since they are nearly inde-
pendent of T as shown in Ref. �16�� The dashed line in Fig.
3�a� shows the extrapolated S�q� at Tc

MCT�0.277 ��Tc
MD

�0.45� and the inset compares its behavior close to the first-
peak position q� with the simulated S�q� at T=0.47, 0.48,
and 1. For the simulated S�q� the peak height increases and
the peak position shifts to larger q upon lowering T as dis-
cussed in Sec. III A. The extrapolated S�q� inherits this trend.
This suggests that the physics should not be significantly
altered due to possible errors in our extrapolation.
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FIG. 3. �Color online� �a� Glass form factors fc�q� of the coher-
ent density correlators 
�q , t� versus q. The circles represent the
result from the simulation at T=0.47, and the solid line that from
MCT. The dashed line denotes the extrapolated S�q� �multiplied by
0.1� at Tc

MCT�0.277. The arrows indicate the peak positions q� and
qC of S�q� and SC�q� �see Fig. 1�. The inset depicts the extrapolated
S�q� at Tc

MCT �dashed line�, and the simulated S�q� at T=0.47 �solid
line�, 0.48 �dotted line�, and 1 �long-dashed line� around the peak
q�. �b� Rescaled � relaxation times �q /�q� �main panel� and the
stretching exponent �q �inset� of 
�q , t� versus q. The circles rep-
resent the result from the simulation at T=0.47, and the solid line
that from MCT.
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Figure 3�a� compares fc�q� from MCT with the simulation
result determined in Ref. �4�. For q�q�=6.9, i.e., for dis-
tances comparable to the average monomer separation, we
find a high degree of accord between theory and simulation.
In particular, the agreement is quite good at q�, which is
gratifying since the coherent dynamics for wave vectors
close to q� drives the glassy slowing-down �see the second
comment below Eq. �34��. On the other hand, the theory fails
to reproduce the shoulder present in the simulation results at
intermediate q near the peak qC=3.4 of SC�q�.

A similar conclusion can be drawn for the � relaxation
time �q, defined via the convention 
�q ,�q�=0.1, which is
shown in Fig. 3�b�. �q depends nonmonotonically on q and
varies over an order of magnitude from �q� �1500 to �q=16
�40 �4�. The theory semiquantitatively captures these trends
for q�q�, but misses the peak around qC. We also find cor-
responding deviations at q�qC in the relaxation stretching,
as demonstrated in the inset of Fig. 3�b�, quantified in terms
of the stretching exponent �q, which is obtained via a
Kohlrausch-law fit of the �-decay part of the correlator,

�q , t��exp�−�t /�q��

�q�.
The circles in Fig. 4�a� show 
�q , t� for q=4.0, 6.9, and

12.8, obtained from simulations at T=0.47, which is close to

Tc
MD�0.45. Clear evidence for the presence of a two-step

relaxation exists. As described in Sec. IV D, MCT provides,
up to a time scale t0 common to all dynamical quantities,
quantitative predictions for the � regime in terms of the
�T-independent� � master curves, which are drawn as solid
lines in Fig. 4�a�. The dynamics including the early � regime
can be described by solving the MCT equations for a tem-
perature T above Tc

MCT, which will be characterized by the
distance parameter �MCT= �Tc

MCT−T� /Tc
MCT. The dashed

curves in Fig. 4�a� present such theoretical results for �MCT

=−0.046, which corresponds to the distance between T
=0.47 and Tc

MD�0.45 of the simulation results. Since the
separation parameter controls the ratio of the time scales
characterizing the � and � relaxation regimes �see Eqs. �56�
and �57��, we found that a better agreement in the early �
regime can be achieved by treating �MCT as a fit parameter.
The theoretical results for �MCT=−0.022, which was chosen
so as to reproduce better the time-scale ratio found in the
simulation data, are shown as dotted lines in Fig. 4�b�. All
the theoretical and simulation curves shown in Figs. 4�a� and
4�b� are plotted versus t /�q�, with �q� being the � relaxation
time at q�. In this way, the unspecified time scale t0 can be
eliminated �see the discussion below Eq. �61��, and the the-
oretical prediction for the q dependence of the � relaxation
times can be examined.

-5 -4 -3 -2 -1 0 1

1.0

10 q*

q = 4.0

q = 6.9

q = 12.8

0.2

0.4

0.8

0.0

0.6

1.0

0.2

0.4

0.8

0.0

0.6

1.0

0.2

0.4

0.8

0.0

0.6

q = 12.8

q = 6.9

(a)

(b)

FIG. 4. �Color online� �a� 
�q , t� as a function of t /�q� for q
=4.0 �left scale�, 6.9 �right scale�, and 12.8 �right scale�. �q� is the �
relaxation time at q�. The circles refer to the simulation results at
T=0.47, the solid lines to the MCT � master curves, and the dashed
lines to the MCT curves at the distance parameter �MCT=−0.046.
�b� 
�q , t� as a function of t /�q� for q=6.9 and 12.8. The circles and
the dashed lines are the same as in �a�, but here the dotted lines
denoting the MCT curves at the distance parameter �MCT=−0.022
are included as well.
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FIG. 5. �Color online� Glass form factors fsc�q� of the correla-
tors 
s�q , t� �a� and fpc�q� of the correlators 
p�q , t� �b� as functions
of the wave number q. The circles represent the result from the
simulation at T=0.47, and the solid line that from MCT. The dash-
dotted line in �a� denotes fG

sc�q� based on the Gaussian approxima-
tion �64� with the value rM

c =0.098 taken from the theoretical calcu-
lation. The dashed line in �b� shows the simulated w�q� �multiplied
by 0.1� at T=0.47.
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Figures 4�a� and 4�b� demonstrate that, for q=6.9 and
12.8, the MCT curves quantitatively describe the simulation
results in both the � and � regimes, including the relative
magnitude of �q and the stretching of the relaxation. �The
disagreement for short times arises mainly because, as men-
tioned at the end of Sec. IV A, the regular part of the
memory kernel is not included in our theory.� On the other
hand, the agreement is not satisfactory at q�qC. We thus
conclude from Figs. 3 and 4 that, except for a process that
occurs at q�qC, our theory describes the coherent structural
dynamics of polymer melts at a semiquantitative level.
Since, as will be discussed at the end of Sec. V D, the dy-
namics at q�qC does not appear to be directly related to the
glass transition, this verifies one of the principal predictions
of our theory: the emergence of the glassy slow dynamics is
connected to the increase of the first peak of S�q�, i.e., to the
local cage effect. We will further comment on the dynamics
at q�qC below.

B. Single-chain density correlators

We next consider the single-chain density correlators.
This will be done in terms of the averaged single-segment
correlators 
s�q , t� and the �normalized� collective single-
chain correlators 
p�q , t� defined by


s�q,t� = �1/N��
a=1

N

Faa
s �q,t� , �62�


p�q,t� = �1/N� �
a,b=1

N

Fab
s �q,t�/w�q� . �63�


s�q , t� is defined solely in terms of the diagonal �a=b� ele-
ments of Fab

s �q , t�, i.e., it probes only the self-motion of
monomers, whereas 
p�q , t� reflects also interference effects
from other monomers belonging to the same chain through
the off-diagonal �a�b� elements. The simulation results for
these correlators for our model have been analyzed in Ref.
�4�.

Theoretical and simulation results for the critical noner-
godicity parameters of 
s�q , t� and 
p�q , t�, to be denoted as
fsc�q� and fpc�q�, are compared in Figs. 5�a� and 5�b�. The
theoretical results are determined from an equation analo-
gous to Eq. �55�, which can be obtained by taking the t
→
 limit of Eqs. �37� and �39�. The full time dependence of
the correlators 
s�q , t� and 
p�q , t� for representative wave
numbers are shown in Figs. 6�a� and 6�b�, where the MCT �
master curves and the MCT curves at the distance parameter
�MCT=−0.046 are compared with the simulated correlators at
T=0.47. All the curves in Figs. 6�a� and 6�b� are plotted
versus t /�q�, with �q� being the � relaxation time of the co-
herent density correlator 
�q , t� at q=q�. In this way, the
theoretical predictions not only for the q dependence of the �
relaxation times of 
s�q , t� and 
p�q , t�, but also for the rela-
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FIG. 6. �Color online� Single-chain density correlators 
s�q , t�
�a� and 
p�q , t� �b� as functions of t /�q� for q=4.0, 6.9, and 12.8.
�q� is the � relaxation time of the coherent density correlator 
�q , t�
at q=q�. The circles refer to the simulation results at T=0.47, the
solid lines to the MCT � master curves, and the dashed lines to the
MCT curves at the distance parameter �MCT=−0.046.
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FIG. 7. �Color online� �a� Normalized Rouse-mode correlators
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omitted. Here, dashed lines represent the MCT curves at the dis-
tance parameter �MCT=−0.046.
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tive time scale of the single-chain and coherent dynamics,
can be tested.

We first notice from Fig. 5�a� that the theory �solid line�
describes well the simulated fsc�q� �circles� including the
wave numbers q�q�. This appears to be inconsistent with
the result for the coherent dynamics, where we found dis-
agreement at q�qC, but can be understood in the following
way. In the small-q limit, the relation 
s�q→0, t�=1
− �q2 /6�gM�t�+O�q4� holds, in terms of the monomer-
averaged MSD, which implies the Gaussian approximation

G

s �q , t��exp�−�q2 /6�gM�t��. The discussion of gM�t� will
be presented in Sec. V D, but let us mention here that the
critical nonergodicity parameter 6�rM

c �2 of gM�t�—the plateau
height of gM�t� in the � regime—quantifies the size of the
cage of a monomer formed by its surroundings. Thus, one
expects the approximation

fG
sc�q� � exp�–q2�rM

c �2� �64�

to be valid at least for small q. The dash-dotted line in Fig.
5�a� shows fG

sc�q� with the value rM
c =0.098 taken from the

theoretical calculation. It is seen that fG
sc�q� describes well

both the theoretical and simulated fsc�q�. This reveals that the
q dependence of fsc�q� mostly reflects the spatial extent of
the localized monomer motion in the � relaxation regime,
and that our theory quantitatively describes the simulated
fsc�q�, since it correctly predicts the size of the cage. Figure
6�a� furthermore indicates that not only the dynamics in the
�-relaxation regime where the correlators 
s�q , t� are close
to the plateaus fsc�q�, but also their � decay, is well described
by the theory, including the relative time scale of the single-
chain and coherent dynamics.

In contrast to fsc�q�, we expect some interference effects
due to chain connectivity to be visible in fpc�q� on top of the
nearly Gaussian background just mentioned. The theoretical
prediction for fpc�q�, shown as the solid line in Fig. 5�b�,
indeed exhibits an oscillatory feature which is in phase with
w�q�. The oscillatory q variation of w�q� in turn reflects the
bonding effect as discussed in Ref. �16�. In the simulated
fpc�q�, shown as circles in Fig. 5�b�, the presence of such
oscillations as predicted by the theory is discernible, though
its amplitude is much smaller. �The oscillation in the simu-
lated fpc�q�, though tiny, can more easily be grasped in Fig. 8
of the first paper in Ref. �4� where both of the simulated
fsc�q� and fpc�q� are plotted in one panel.� This explains, e.g.,
why the theory does not describe so well the simulated

p�q , t� at q=4.0 �Fig. 6�b��, in spite of the fact that it well
describes the simulated 
s�q , t� at the same wave number
�Fig. 6�a��: the oscillatory q dependence of the plateau height
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FIG. 8. �Color online� The plateau heights fp
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of the � relaxation times �b�, and the stretching exponent �p �c� of
the Rouse-mode correlators cp�t� as a function of the mode index p.
The circles represent the result from the simulation at T=0.47, and
the solid line that from MCT. The dotted line in each panel refers to
pure Rouse behavior predicted by our theory in the asymptotic limit
of large N �see Appendix B�: fp

c =1, �p� �sin�p� /2N��−2, and �p

=1.
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and the � relaxation time is more pronounced in the theoret-
ical prediction.

C. Rouse-mode dynamics

We next turn our attention to the Rouse-mode correlators
Cpp��t� describing the chain conformational dynamics.
Circles in Fig. 7�a� show the simulation results for the nor-
malized Rouse-mode correlators cp�t�=Cpp�t� /Cpp�0� at T
=0.47 for representative mode indices p. It is seen that cp�t�
do not clearly exhibit the two-step relaxation. This is because
the plateaus fp

c of cp�t� are so large �fp
c �0.9 for simulation

results as shown in Fig. 8�a�� that only about 10% or less of
the decay is left for the relaxation towards the plateau. Thus,
most of the relaxation of cp�t� occurs in the � regime. We
therefore included for comparison only the MCT � master
curves as solid lines in Fig. 7�a�, and the comparison includ-
ing the early � regime is done separately in Fig. 7�b�, which
highlights the plateau regime. For a more quantitative com-
parison of the features in the � relaxation, theoretical and
simulation results for the plateau heights fp

c, the � relaxation
time �p defined via the convention cp��p�=0.1, and the
stretching exponent �p based on the Kohlrausch-law fit of
cp�t� are compared in Fig. 8 for all the Rouse modes p.

It is seen from Figs. 7 and 8 that our first-principles theory
describes at a semiquantitative level the main features of the
simulation results for cp�t�, such as the high plateau values fp

c

and the nearly exponential relaxation ��p�0.9�. In particu-
lar, from the comparison of the ratio �p /�q� of the � relax-
ation times shown in Fig. 8�b�, we see that the theory pro-
vides a good description of the time-scale separation of the
single-chain conformational fluctuations �characterized by
�p� from the local dynamics of the surrounding medium
��q��, which becomes more pronounced with decreasing p.

The Rouse theory assumes a chain to be in a Markovian
heat bath, i.e., that all dynamical correlations in the sur-
roundings are much faster than the single-chain dynamics
�2�. However, since a polymer is surrounded by identical
polymers, the assumption of the time-scale separation cannot
be justified a priori. Our microscopic theory developed here
verifies this central assumption from first principles: our
theory predicts the time-scale separation for small p /N, and
hence, the Markovian approximation can be justified for
small Rouse-mode indices �see Appendix B�. The simulated
results for the Rouse-mode correlators do not exhibit pure
Rouse behavior due to finite-N effects �see Appendix B 4�,
and even such deviations can be semiquantitatively ac-
counted for by our theory, as demonstrated in Fig. 8 where
the pure Rouse behavior is also included for comparison.

On the other hand, we also observe features predicted by
the Rouse model, in both the simulated and theoretical re-
sults, already for such short chains as N=10. Let us recall
from Ref. �33� that the matrix of the equilibrium values of
the �unnormalized� Rouse-mode correlators for our model is
close to diagonal, Cpp��t=0���pp�, and that the amplitude
Cpp�t=0� for the smallest p is approximately given by the
Gaussian result. It is an important numerical observation
within our approach that the Rouse-mode correlators Cpp��t�
remain nearly diagonal for all the times, in agreement with

the simulation result, and that the time-scale separation holds
rather well between the memory functions in Eq. �54� and
the Rouse-mode correlators for the smallest p. This holds
because collective density fluctuations at microscopic wave-
lengths dominate the memory functions. This is also the rea-
son why the theory yields asymptotically the Rouse model
spectrum in the large-N limit and the characteristic �t
anomaly in the average segmental MSD �see Appendix B�.

D. Mean-square displacements

Now, let us see how the Rouse-mode dynamics affects the
single-chain diffusional processes. The circles in Fig. 9 show
the simulation results for the monomer-averaged MSD gM�t�
and the c.m. MSD gC�t�. The MSDs also exhibit a two-step
relaxation: after the short-time ballistic regime gX�t�� t2 �X
=M or C�, the increase of the MSD begins to be suppressed
due to the cage effect, and there appears the � regime where
gX�t� is close to a plateau which will be denoted as 6�rX

c �2.
The appearance of the plateau regime reflects the confined
dynamics of monomers inside the cage, and the height of the
plateau of the monomer MSD gM�t� reflects the size of the
cage. We find both from theory and simulation rM

c �0.1 �see
Fig. 9�, i.e., the amplitude of the confined dynamics inside
the cage is about 10% of the monomer diameter. The in-
crease of gX�t� above the plateau toward the diffusion as-
ymptote, gX�t�=6Dt with D denoting the diffusion constant,
is the � process of the MSD. In contrast to gC�t�, gM�t� in
this regime is significantly affected by chain connectivity
since the monomers participate in the conformational motion
and most of the conformational fluctuations reflected by cp�t�
occur in the � regime as mentioned above. As a result, a
polymer-specific anomaly in the MSD—a subdiffusive
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FIG. 10. �Color online� Double-logarithmic presentation of
gM�t� �labeled M� and gC�t� �labeled C� versus Dt at T=1. The
upper inset exhibits gMC�t��gM�t�−gC�t�, whereas the lower inset
shows the q dependence of the ratio �q /�q� of the � relaxation times
of the coherent density correlators 
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��tx� regime—emerges in gM�t� in the � regime. Since MCT
predicts the presence of the von Schweidler–law process as a
universal feature �see Sec. IV D�, such a polymer-specific
feature shows up after the end of the von Schweidler–law
process but before the onset of final diffusion �15�.

In Fig. 9 the data are plotted versus Dt so that the simu-
lated and theoretical curves coincide in the diffusive late-�
regime. This representation facilitates the comparison in the
� and early-� regimes. �Plotting MSDs versus t /�q� as in
Figs. 4 and 7 leads to a horizontal shift of the theoretical
curves to the right by a factor of about 0.3 on the log10 t
axis.� Figure 9 demonstrates that the theory in terms of the
MCT � master curve �solid line� describes the polymer-
specific subdiffusive variation of the � process, where
gM�t�� tx with x=0.63. Solving the MCT equations for
�MCT=−0.046, whose results are drawn as dashed lines in
Fig. 9, the description of the simulated gM�t� can be extended
to about seven decades in t. Our theory derives the Rouse
result x=1 /2 for N→
 �see Appendix B and Ref. �15��, in
agreement with simulations of long chains in which topo-
logical constraints are eliminated �34�. Thus, we suggest that
the somewhat larger x=0.63 found in our N=10 model is a
deviation from the pure Rouse behavior due to finite-N ef-
fects �see Appendix B 4�.

The inset of Fig. 9 compares the ratio g1�t� /g5�t� of the
MSDs for the end �g1�t�� and central �g5�t�� monomers in a
chain. This ratio is 1 in the ballistic and diffusive regimes,
and exhibits a maximum for times where conformational
motion dominates the dynamics �i.e., for t where gM�t�
� t0.63�. The ratio is also close to 1 in the � regime, indicat-
ing that the cage effect slows the motion of end and inner
monomers in the same way. This is because the dynamics in
the � regime is dominated by the confined dynamics of the
monomers inside the cage. The inset of Fig. 9 also reveals
semiquantitative agreement between theory and simulation
for later times where the ratio exhibits a maximum. This
indicates that the motion of the end monomer and that of the
central monomer are well discriminated by the theory. Thus,
chain-end effects for the dynamics of a tagged chain are
properly taken into account by our theory, even though this
effect was neglected in the �static� direct correlation func-
tions �see Eq. �15��. This is because the matrix structure of
Eqs. �37� and �39� is preserved for describing the single-
chain dynamics. The found agreement of the ratio g1�t� /g5�t�
also shows that its maximum value, which is somewhat
smaller than 2—the result expected from the Rouse theory—
reflects deviations due to finite-N effects.

Concerning gC�t�, on the other hand, the theory is not so
satisfactory: besides the underestimated plateau height, a
careful examination of Fig. 9 indicates that the theoretical
gC�t� enters the diffusion regime earlier than the simulated
one. We will come back to this point in the following. We
only notice here that the disagreement in gC�t� does not carry
over to gM�t�, because gM�t��gC�t� for times before the on-
set of the final diffusion regime.

As discussed above, our theory yields a subdiffusive,
Rouse-like behavior close to Tc. Clearly, this polymer-
specific feature is also present in the simulation at high T.
However, as T increases, the cage effect loses its importance,

and it is thus not clear a priori to what extent the theory can
still be applied. To examine this, we analyze in Fig. 10 the
MSDs at T=1, which is more than twice Tc

MD. Here, the
theory utilizes S�q� taken directly from the simulation at this
temperature. Figure 10 indicates that, beyond the short-time
regime, the agreement between theory and simulation is very
good for gM�t�. In particular, we find gM�t�� t0.63 with the
same exponent. Thus, though originally developed to de-
scribe glassy dynamics, our theory can also properly deal
with the conformational dynamics in normal liquid states.

The upper inset of Fig. 10 exhibits the function gMC�t�
�gM�t�−gC�t�. According to Eq. �49�, this function high-
lights the contributions from the chain conformational fluc-
tuations to gM�t�, and depends only on the Rouse modes of
nonzero mode indices p�1. The inset clearly indicates that
the subdiffusive behavior �t0.63 entirely comes from the
Rouse modes, and that the exponent 0.63 does not reflect a
crossover effect from the pure Rouse behavior to the final
diffusion �i.e., At0.5+6Dt� t0.63�, but is indeed due to finite-N
effects.

On the other hand, we find at T=1 again the same dis-
agreement for gC�t� and for the ratio �q /�q�. �i� The theoret-
ical gC�t� enters the diffusion regime earlier than the simu-
lated one which additionally exhibits a subdiffusive behavior
gC�t�� ty with y�0.8, known as “anomalous c.m. diffusion”
�7,35�. �ii� The theoretical � relaxation times �q of 
�q , t�
agree quantitatively with the simulation for q�q�, but not
for q�qC �see the lower inset of Fig. 10�. Thus, the disagree-
ments observed at T=0.47 are already present at high T,
suggesting that they are not directly related to the glass tran-
sition.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we proposed a unified first-principles de-
scription of the collective structural slowing down and of the
single-chain conformational fluctuations in a melt of unen-
tangled polymers. The description requires static input which
can be taken directly from simulations, uses approximations
like the equivalent-site approximation that can be tested ex-
plicitly �16�, and attains semiquantitative agreement with
simulation results concerning collective as well as single-
chain dynamics. Our comparative study of theoretical predic-
tions and simulation data identifies local structural correla-
tions of monomers as the origin for the onset of glassy slow
dynamics. It is also shown that the chain connectivity causes
the polymer-specific long-time anomalies of the � process,
which manifest themselves in the subdiffusive monomer
mean-square displacement. Thus, the widely used picture of
polymer transport in unentangled melts, the Rouse model—
including deviations due to finite N—emerges from our first-
principles approach �see Appendix B�.

On the other hand, we also found deviations between the-
oretical and simulation results. Though probably not directly
related to the glass transition �see the end of Sec. V D�, the
most noticeable disagreement occurs in the collective density
fluctuations on the length scale of a chain, q�qC �Fig. 3�.
This disagreement might explain why our theory underesti-
mates Tc �Tc

MCT�0.277�Tc
MD�0.45�. There are discernible
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slow modes at q�qC, not accounted for by our theory, which
appear to couple to the relaxation at other wave vectors. The
only way in which our theory can compensate this additional
coupling is by making the cage effect stronger, i.e., by
increasing the first peak of S�q� via a decrease of Tc

MCT.
Another possible source for the underestimation of Tc

MCT

could result from the neglect of the triple direct correlation
functions c3 in our theoretical calculations. It was found from
a MCT analysis for a model of ortho-terphenyl that including
c3 considerably increases Tc

MCT �36�. For our polymer model,
c3 has been determined from simulations in Ref. �16�, and in
principle it would be rather straightforward to take them into
account in our theory. Unfortunately, the statistical accuracy
of the simulated c3 was not sufficient to allow for a mean-
ingful test to investigate to what extent the inclusion of c3
affects the value of Tc

MCT.
Inspection of Fig. 10 implies that the disagreement found

in the theoretical predictions—the one in the collective dy-
namics at q�qC and the other in gC�t� concerning the
anomalous c.m. dynamics—might be somehow related, since
these are the features for which our theory does not work
well. Superficially, this conjecture agrees with the physics
discussed in Ref. �35�. There, the anomalous c.m. MSD is
connected to the polymer coils interacting as spheres of ra-
dius of gyration Rg, and the dynamics at qC�2� /Rg reflects
the polymer packing. This implies that taking into account
the spatial correlation of c.m.’s through the c.m. structure
factor SC�q� might improve the theoretical results for 
�q , t�
at q�qC and gC�t�. Implementing this idea is rather straight-
forward �see Ref. �37� for a related problem�. However, no
improvement was obtained in our case, certainly because
SC�q� at qC is already close to 1 �see the inset of Fig. 1�.
Thus, the static coupling between the c.m.’s in our model is
very weak. Furthermore, their dynamic coupling is also
found to be weak, as evidenced by the close agreement of
their coherent and incoherent intermediate scattering func-
tions at qC �38�. At present, it is not clear how to improve the
theory to account for the deviations observed in the collec-
tive dynamics at q�qC and in the c.m. MSD gC�t�. It would
be interesting to investigate to what extent such features are
universal or model dependent. Only comparison with other
models can elucidate this point.

There is another interesting related issue concerning the
collective dynamics at q�qC. One observes from comparing
Fig. 3�b� with the lower inset of Fig. 10 that the simulation
result for the ratio �qC

/�q� of the � relaxation time at qC to
the one at the structure factor peak position q� decreases with
decreasing T toward Tc

MD. A similar feature was observed in
a simulation result for a model of ortho-terphenyl which also
exhibits some unusual properties at intermediate wave num-
bers corresponding to qC of the present polymer model �37�.
A similar T dependence of the ratio �q /�q� at intermediate q
range ��0.4q�� was also found in the coherent neutron-
scattering results for a real polymer system �39�. As dis-
cussed in some detail in Ref. �37�, such T dependence of the
ratio of the � relaxation times is beyond the implication of
MCT. Thus, further investigations are necessary for a com-
prehensive understanding of the as yet theoretically unex-
plained dynamics at intermediate wave numbers which are

observable in simulation and experimental data for polymer
systems.
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APPENDIX A: DERIVATION OF THE MCT EQUATIONS
OF MOTION

This appendix is devoted to the derivation of the MCT
equations of motion for general flexible �in the sense that
constituent atoms are bonded by some nonrigid potential�
molecules. Additional approximations, introduced specifi-
cally for handling polymeric systems, are discussed in the
main text.

1. Zwanzig-Mori equation of motion

We start from the derivation of an exact equation of mo-
tion for the site-site density correlators Fab�q , t�
= ��a�q��eiLt�b�q�
 /n based on the Zwanzig-Mori projection-
operator formalism �21�. Here, L denotes the Liouville op-
erator

iL = �
i=1

n

�
a=1

N

vi
a ·

�

�ri
a −

1

m
�
i,j=1

n

�
a,b=1

N
�U��ri

a − r j
b��

�ri
a ·

�

�vi
a ,

�A1�

where ri
a �vi

a� denotes the position �velocity� of the site a in
the ith molecule. The interaction potential U�r� comprises
both the intra- and intermolecular contributions �see Sec. II�.

To derive the exact equation for Fab�q , t�, let us also in-
troduce the longitudinal current density fluctuations ja�q�
=�i=1

n vi,z
a eiq·ri

a
where the wave vector q is chosen along the z

axis, and vi,z
a �t� denotes the z component of the velocity.

�a�q� and ja�q� satisfy the continuity equation

�̇a�q� = iL�a�q� = iqja�q� , �A2�

in which the overdot denotes the time derivative. For
flexible-molecule systems whose kinetic energy reads
�i,am�vi

a�2 /2, the static longitudinal current correlation func-
tion is given by

Jab�q� =
1

n
�ja�q��jb�q�
 = �abv

2, �A3�

due to the equipartition theorem. Unlike the case for rigid
molecules �40�, there is no off-diagonal element and no
wave-number dependence in Jab�q�.

Let us introduce two row vectors ��q� and j�q�, whose
components are �a�q� and ja�q�, respectively. Combining
��q� and j�q� to form a new row vector C�q�� (��q�j�q�),
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we introduce the following projection operator P which acts
on some row vector X�q�:

PX � C�C,C�−1�C,X� . �A4�

Here, the inner product of two row vectors A1 and A2 will be
defined as the canonical ensemble average �A1 ,A2�
��A1

†A2
 /n, in which A1
† denotes a column vector adjoint to

A1, and the factor 1 /n is a matter of convention. The matrix
�C ,C� can thus be expressed in terms of the site-site static
correlation functions as

�C,C� = �S�q� 0

0 J�q�
	 , �A5�

and its inverse is trivially given in terms of S−1�q� and
J−1�q�.

With the projection operator P so defined, the standard
procedure of the Zwanzig-Mori formalism leads to the fol-
lowing equation of motion for Fab�q , t�:

F̈ab�q,t� + �
x=1

N

�ax
2 �q�Fxb�q,t�

+ �
x=1

N �
0

t

dt�Max�q,t − t��Ḟxb�q,t�� = 0. �A6�

Here the characteristic frequency matrix reads

�ab
2 �q� = q2v2Sab

−1�q� , �A7�

and the formal expression for the site-site memory kernel
Mab�q , t� is given by

Mab�q,t� =
1

nv2 �fa�q��exp�iQLQt�fb�q�
 , �A8�

in terms of the fluctuating random force

fa�q� = j̇a�q� − iqv2�
�

���q�S�a
−1�q� , �A9�

which evolves with the generator QLQ, where Q�1−P. So
far, no approximation has been invoked, and the above equa-
tion for Fab�q , t� is formally exact.

2. Mode-coupling approximation

The basic idea behind the mode-coupling theory is that
the fluctuation of a given dynamical variable decays, at in-
termediate and long times, predominantly into pairs of hy-
drodynamic modes associated with quasiconserved dynami-
cal variables. It is reasonable to expect that the decay of the
memory function at intermediate and long times is domi-
nated by those mode correlations which have the longest
relaxation times. The sluggishness of the structural relaxation
processes in glass-forming systems suggests that the slow
decay of the memory function at long times is basically due
to couplings to wave-vector-dependent pair density modes of
the form A���k ,p�����k����p�. The simplest way to extract
such a slowly decaying part is to introduce another projec-
tion operator P2 which projects any variable onto the sub-

space spanned by A���k ,p�. Translational invariance of the
system implies that the only A���k ,p� whose inner products
with a dynamical variable X�q� are nonzero are for the wave
vectors p satisfying p=q−k. From here on, we denote by
A�� those A���k ,p� in which p=q−k, and we define

P2X �
1

2�
k

�
�,�,��,��

A���A��,A�����
−1�A����,X� .

�A10�

Here the factor 1/2 is to avoid the double counting in the
summation over the wave vectors, and the inverse is defined
via

�
��,��

�A��,A������A����,A�����
−1 = ��������. �A11�

It is readily verified that P2 is idempotent and Hermitian.
The first approximation in the mode-coupling approach

thus corresponds to replacing the time-evolution operator
exp�iQLQt� by its projection on the subspace spanned by
A��: exp�iQLQt��P2 exp�iQLQt�P2. Under this approxi-
mation, the memory function reads

Mab�q,t� =
1

nv2 �P2fa�q��exp�iQLQt�P2fb�q�
 .

�A12�

The second approximation is to factorize averages of prod-
ucts, evolving in time with the generator QLQ, into products
of averages formed with variables evolving with L �factor-
ization approximation�:

1

n2 ����k�����p��eiQLQt����k�����p�
 � F����k,t�F����p,t� .

�A13�

Specializing this approximation to t=0, it follows from Eq.
�A11� that the denominator in Eq. �A10� is given by

�A��,A�����
−1 =

1

n
S���

−1 �k�S���
−1 �p� . �A14�

Let us obtain the explicit expression for the projected ran-
dom force,

P2fa�q� = P2 j̇a�q� − iqv2�
�

�P2���q��S�a
−1�q� . �A15�

To this end, we need to evaluate triple correlations
(A�� , j̇a�q�) and (A�� ,���q�). The former can be expressed as

„���k����p�, j̇a�q�… = ikz
1

n
�j�

��k���
� �p�ja�q�


+ ipz
1

n
���

��k�j�
� �p�ja�q�
 , �A16�

where we have used the relation �AḂ
=−�ȦB
 and the con-
tinuity equation �A2�. kz �pz� denotes the z component of the
vector k �p�. Since �vi,z

a v j,z
b 
=�ij�abv2, it holds that
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�j�
��k���

� �p�ja�q�
 /n=�a�v2S���p� and ���
��k�j�

� �p�ja�q�
 /n
=�a�v2S���k�, leading to

„���k����p�, j̇a�q�… = ikz�a�v2S���p� + ipz�a�v2S���k� .

�A17�

The other triple correlation can be expressed in terms of the
three-site static structure factor:

„���k����p�,���q�… =
1

n
����k�����p�����q�
 � S����k,p,q� .

�A18�

In the present study, the convolution approximation devel-
oped in Ref. �40� will be employed:

S����k,p,q� � �
�

S���k�S���p�S���q� . �A19�

Using these results, we finally obtain

P2fa�q� = −
iv2

n
�
k

�
�

kz���a − S�a
−1�k�����k��a�p�

= −
i�v2

n
�
k

�
�

kz�c�a
intra�k� + c�a�k�����k��a�p� .

�A20�

Here, cab
intra�q�= ��ab−wab

−1�q�� /� denotes the intramolecular
direct correlation function �41�, whereas cab�q� is the inter-
molecular one defined in Eq. �14�. Thus, the projected ran-
dom force naturally comprises the intramolecular as well as
intermolecular contributions.

The MCT expression for Mab�q , t� can be obtained by
substituting Eq. �A20� into Eq. �A12� and then invoking the
factorization approximation �A13�, but let us make here a
comment on the intramolecular contribution. Within the
same approach outlined above, one can derive the MCT ex-
pression for the memory kernel for the site-site transverse
current density correlator, whose q→0 limit is related to the
shear-stress autocorrelation function G�t� �21�. It is well
known for unentangled polymer chains that G�t� exhibits a
power-law decay �t−1/2 for long times. According to the
Rouse theory, this polymer-specific decay in G�t� is ac-
counted for by the intrachain �or Rouse-mode� contributions
�2�. However, we found that our intramolecular contributions
given in terms of cintra do not lead to this Rouse model result
for G�t�. This implies that a completely different kind of
approach is necessary for a proper treatment of the intramo-
lecular contributions in the coherent moduli. Indeed, we
found a reasonable approach starting from a different projec-
tion operator for the intramolecular forces, which reproduces
the Rouse model result for G�t�. This issue, however, will not
be investigated further here, and will be studied in a forth-
coming presentation. Let us only mention that �i� even with
the inclusion of such intramolecular contributions to the ran-
dom force or to the memory kernel, we confirmed that all the
theoretical results presented in the main text are not much
affected, and �ii� neglecting intramolecular contributions to
the fluctuating force does not mean that intramolecular cou-

plings are completely discarded in our theory, since the in-
trachain static correlations are properly taken into account
via wab�q�.

The following expression for P2fa�q� will therefore be
employed in the present work:

P2fa�q� = −
i�v2

n
�
k

�
�

�q̂ · k�c�a�k����k��a�p� ,

�A21�

in which we have expressed kz as q̂ ·k with q̂=q /q. With the
use of the factorization approximation �A13�, this leads to

Mab�q,t� =
�v2

�2��3 �
�,�=1

N � dk��q̂ · k�2c�a�k�c�b�k�F���k,t�

	Fab�p,t� + �q̂ · k�

	�q̂ · p�c�a�k�c�b�p�F�b�k,t�Fa��p,t�� . �A22�

3. MCT equations for a tagged molecule’s correlator

The MCT equations of motion for a tagged molecule �la-
beled s� can be derived in a similar manner, and only the
outline of the derivation and resulting equations will be pre-
sented in the following. The Zwanzig-Mori equation for the
tagged molecule’s density correlator Fab

s �q , t�
= ��a

s�q�eiLt�b
s�q�
 is obtained from the projection operator Ps

onto �a
s�q� and ja

s�q�=vs,z
a eiq·rs

a
, and is given by

F̈ab
s �q,t� + �

x=1

N

�ax
s2�q�Fxb

s �q,t�

+ �
x=1

N �
0

t

dt�Max
s �q,t − t��Ḟxb

s �q,t�� = 0. �A23�

Here the characteristic frequency matrix reads

�ab
s2�q� = q2v2wab

−1�q� , �A24�

and the formal expression for the memory kernel is given by

Mab
s �q,t� =

1

v2 �fa
s�q��exp�iQsLQst�fb

s�q�
 , �A25�

in terms of the fluctuating random force evolving with
QsLQs �Qs�1−Ps�

fa
s�q� = j̇a

s�q� − iqv2�
�

��
s�q�w�a

−1�q� . �A26�

The memory kernel under the mode-coupling approxima-
tion reads

Mab
s �q,t� =

1

v2 �P2
s fa

s�q��exp�iQsLQst�P2
s fb

s�q�
 .

�A27�

Here the operator P2
s projects any variable onto the subspace

spanned by the pair density modes A��
s �k ,p�=��

s �k����p�
formed by the tagged molecule’s density fluctuations and
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collective ones. Adopting the convolution approximation rel-
evant here �40�,

���
s �k�����p����

s�q�
 � �
�

w���k��h���p�w���q� ,

�A28�

one obtains for the projected random force

P2
s fs

a�q� = − i
�v2

n �
k

�
�,�,�

�kz���a − w�a
−1�k��

+ pz��a�wa��p�c���p���
s �k����p�

= − i
�v2

n �
k

�
�,�,�

�kz�c�a
intra�k� + pz��a�

	�I − �cintra�p��a�
−1c���p���

s �k����p� ,

�A29�

where in the final equality the intramolecular structure factor
is expressed in terms of cintra. Again, intramolecular contri-
butions given in terms of cintra will be neglected here, which
leads to

P2
s fa

s�q� = −
i�v2

n
�
k

�
�

�q̂ · p�ca��p��a
s�k����p� .

�A30�

All the theoretical results presented in the main text are not
much affected by this neglect, since wab�q� for microscopic
wave vectors, in particular, near the peak position q� of the
static structure factor S�q�, are close to diagonal �16�, in
which case cab

intra�q��0 holds. In addition, our derivation of
the Rouse model presented in Appendix B is not altered
since the relevant memory kernel there, m̂�=0�t�, is formed by
the summation �a=1

N P2
s fa

s�q� →0� of the projected random
forces in the small-wave-vector limit, for which both Eqs.
�A29� and �A30� yield the identical expression. Under the
factorization approximation

1

n
��a

s�k�����p��eiQsLQst�b
s�k����p�
 � Fab

s �k,t�F���p,t� ,

�A31�

substituting Eq. �A30� into Eq. �A27� finally yields

Mab
s �q,t� =

�v2

�2��3 �
�,�=1

N � dk�q̂ · p�2ca��p�cb��p�

	Fab
s �k,t�F���p,t� . �A32�

APPENDIX B: DERIVATION OF THE ROUSE
MODEL

In this appendix, we show that our microscopic formula-
tion for the polymer dynamics based on MCT reduces to the
Rouse model in the asymptotic limit of large degrees of po-
lymerization N. Implications of our theory in this limit for
the Rouse-mode correlators in the � and � relaxation re-

gimes and possible finite-N corrections are also discussed.

1. MCT equations for mean-square displacements

We start by deriving the MCT equations for monomer
MSDs,

�rab
2 �t� � �rab

2 �t� − �rab
2 �0� with �rab

2 �t� = ��ra�t�

− rb�0��2
 . �B1�

Notice that the c.m. MSD gC�t� and the monomer-averaged
one gM�t� introduced in Sec. IV C can be expressed in terms
of �rab

2 �t� as

gC�t� =
1

N2 �
a,b=1

N

�rab
2 �t� , �B2�

gM�t� =
1

N
�
a=1

N

�raa
2 �t� =

1

N
Tr��r2�t�� . �B3�

Since Fab
s �q→0, t�=1−q2�rab

2 �t� /6+O�q4� �see Eq. �36��,
the Zwanzig-Mori equation for �rab

2 �t� can be derived from
the small-q behavior of Eq. �37�,

1

v2�t
2�rab

2 �t� + q2�
x=1

N

wax
−1�q → 0��rxb

2 �t�

+ �
x=1

N �
0

t

dt�max�t − t���t��rxb
2 �t�� = 6�ab, �B4�

with the memory kernel mab�t�=limq→0 q2�xwax
−1�q�mxb�t�

�see Eqs. �39� and �40��:

mab�t� =
�m

6�2� dk k4S�k�c�k�2Fab
s �k,t�
�k,t� . �B5�

In Eq. �B4�, the term q2wab
−1�q→0� has to be kept since

wab�q=0�=1 is singular and its inverse does not exist. For
gC�t�, a somewhat simplified equation can be derived by tak-
ing �1 /N2��a,b of Eq. �B4� and noticing that
limq→0 q2�awax

−1�q�=0:

1

v2�t
2gC�t� +

1

N2 �
a,x,b=1

N �
0

t

dt�max�t − t���t��rxb
2 �t�� =

6

N
.

�B6�

2. Derivation of the Rouse model as asymptotic solution

In general, no simplification of the complicated couplings
in the motions of all monomers is possible, as an exact di-
agonalization of the integro-differential equations for the ma-
trix �rab

2 �t� is required. Only for long times and large degrees
of polymerization N is an asymptotic solution possible, and it
is presented in the following. It rests upon the property of the
memory functions mab�t� in Eq. �B5� that they are cut off by
the collective density fluctuations. The slowest collective
correlator 
�q , t� is connected with the average monomer
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separation and lies at the position q� of the peak of S�q� �see
Sec. V A�. Thus, at long times, the tagged polymer’s density
correlator Fab

s �q , t� at the �asymptotically N-independent�
wave vector q� dominates the memory functions. It is
bounded by the intrachain structure factor at that wave vec-
tor, i.e., wab�q���Fab

s �q� , t� �in the sense that wab�q��
−Fab

s �q� , t� is positive definite�. As long as wab�q�� on this
length scale contains no anomalous correlations extending
over large monomer separations, i.e., wab�q��→0 for �a−b�
→
, the same property holds for the memory function as
well: mab�t�→0 for �a−b�→
. This property, and that mab�t�
decays to zero for times longer than �q�, the structural relax-
ation time, are the central ingredients to the derivation of the
Rouse model within our approach. Note that the above rea-
soning also holds if the role of the microscopic wave vector
q� is replaced by some other wave vector q†, as long as q† is
characteristic of local motion and asymptotically N indepen-
dent. Thus, the following reasoning also applies to high tem-
perature, where, as discussed in Sec. V D, the slowest col-
lective mode in the simulation result is found to lie at q
�qC �42�.

For long times, t→
, Eq. �B6� is solved by a uniform
increase of all MSDs following the c.m. motion:

gC�t� → 6Dt and �rab
2 �t� → gC�t� + O�tx� , �B7�

where the Markovian limit in the memory function requires
t��q�. Below, we will determine the leading correction that
exhibits a power-law behavior with the exponent x=1 /2. As
explained above, the site dependence of mab�t� for long times
is dominated by the tagged polymer’s density fluctuations at
microscopic wave vectors. Therefore, the summation over
site indices and consecutive k integration will asymptotically
become N independent, and the diffusion constant D scales
as

D =
kBT

N�
�N → 
� , �B8�

with the �asymptotically N-independent� friction coefficient �
determined by

�/kBT =
�m

6�2�
0




dt� dk k4S�k�c2�k�� 1

N
�

a,b=1

N

Fab
s �k,t�	
�k,t� .

�B9�

We confirmed that the Gaussian chains studied in Ref. �15�
follows the asymptotic law �B8� for large N.

In considering internal-mode contributions to the mono-
mer MSD in the limit of N→
, chain-end effects can be
neglected, and the structure of the various matrices in Eq.
�B4� simplifies. We can assume that they depend only on the
difference of indices, s=a−b �characteristic of Toeplitz ma-
trices �43��, and we define, e.g., �r�s=a−b�

2 �t�=�rab
2 �t�. This

assumption neglects monomer correlations caused by chain
ends and does not hold, e.g., for isolated self-avoiding-walk
polymers in good solvents, whose end regions are slightly
less swollen than middle portions. Similar correlations have
recently been discovered also in long-chain polymer melts,
but the amplitude is much weaker than in dilute solution

�44�. Here, as a first step, we assume that such nontrivial
correlations are absent.

For the monomer-averaged MSD, it suffices to obtain the
distribution of the internal modes since gM�t� in Eq. �B3� is
expressed as the trace of the matrix �rab

2 �t�, where only the
eigenvalues of the internal modes enter. The distribution in
the N→
 limit can be found by assuming periodic boundary
conditions and performing a Fourier transform. Transformed
quantities like

�r̂�
2�t� = �

s=−





ei�s�r�s�
2 �t� �B10�

will be marked by a caret. Notice that gC�t�= �1 /N��r̂�=0
2 �t�

and gM�t�= �1 /N����r̂�
2�t� hold, so that the internal-mode

contribution to the monomer-averaged MSD is given by

gM�t�−gC�t�= �1 /N����0�r̂�
2�t�. In the asymptotic N→


limit, the monomer-averaged MSD follows from the density
of states of internal modes via �43�

gM�t� − gC�t� → �
−�

� d�

2�
�r̂�

2�t� . �B11�

Here and in the following, ��0 will be assumed unless
stated otherwise.

The equation of motion for �r̂�
2�t� is obtained from Eq.

�B4� via Fourier transformation, recognizing that matrix
products, owing to the assumption of the dependence on the
index difference only, become convolution and turn into
simple products after Fourier transformation:

1

v2�t
2�r̂�

2�t� + �̂��r̂�
2�t� + �

0

t

dt�m̂��t − t���t��r̂�
2�t�� = 6.

�B12�

Here we have introduced

�̂�
−1 � lim

q→0

ŵ��q�
q2 = −

1

6 �
s=−





ei�s�r�s�
2 �0� , �B13�

and the transformed memory kernel is given by

m̂��t� =
�m

6�2� dk k4S�k�c2�k�F̂�
s �k,t�
�k,t� . �B14�

Equations �B11� and �B12� yield the N-independent growth
of the monomer-averaged MSD resulting from the internal
modes, whose spectrum will be determined to lowest order
in the mode parameter �. The Gaussian approximation will
be assumed for the large-separation behavior in �r�s=a−b�

2 �0�

�44�, so that the small-� properties of �̂� can be found from

�̂�
−1 � −

1

6 �
s=−





ei�s�s��s
2 →

�s
2

3�2 . �B15�

Here �s denotes the statistical segment length. At the same
time, the memory kernel is Taylor expanded for small �, and
then a Markovian approximation �see the next section� is
performed,
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m̂��t� � ��
0




dt m̂�=0�t�	��t� = ��/kBT���t� , �B16�

to derive the long-time behavior. It is justified, as discussed
above, because the memory kernel is dominated by micro-
scopic wave vectors, where the summation over s=a−b con-
verges rapidly and an expansion in � is possible. In Eq.
�B16� only the lowest order in � is retained, which is given
by the friction coefficient from Eq. �B9� of the c.m. motion.
Neglecting the inertia term for long times, we find from Eq.
�B12� for the small-� modes

�

kBT
�t�r̂�

2�t� +
3�2

�s
2 �r̂�

2�t� = 6, �B17�

with the initial value �r̂�
2�0�=0, or equivalently

�

kBT
�t�r̂�

2�t� +
3�2

�s
2 �r̂�

2�t� = 0, �B18�

whose solution reads

�r̂�
2�t� = e−3kBT�2t/��s

2
�r̂�

2�0� , �B19�

with �r̂�
2�0�=−2�s

2 /�2. From this, the following monomer-
averaged MSD follows for long times, as familiar in the
Rouse model �2�:

gM�t� − gC�t� = �
−�

� d�

2�

�s
2

2�2 �1 − e−3kBT�2t/��s
2
�

→
2�s

2

�3/2�3�2kBT

��s
2

�t . �B20�

This concludes the derivation of the Rouse model as the
asymptotic large-chain-length limit of the MCT equations for
a polymer chain dissolved in a melt of identical polymers.
�The use of the Markovian approximation will be justified in
the next section.� We find the expected scaling of the diffu-
sion coefficient with molecular weight in Eq. �B8�, the �low-
lying� spectrum of eigenvalues in Eq. �B19�, and the result-
ing anomaly in the monomer MSD, Eq. �B20�. The occurring
parameters can be measured from global chain properties:
the friction coefficient � from the averaged friction kernel
Eq. �B9�, and the segment length �s from the Gaussian be-
havior of the equilibrium segment correlations at large sepa-
ration, Eq. �B15�.

3. Implications for the Rouse-mode correlators

We notice that �r̂�
2�t� is essentially the �diagonal� Rouse-

mode correlators Cpp�t� introduced in Sec. IV C with the
correspondence �� p /N since 6�p�1�Cpp�0�−Cpp�t��
=���0��r̂�

2�t�−�r̂�
2�0�� holds, from the comparison of Eqs.

�49� and �B11�. The difference comes from the boundary

condition adopted in defining Cpp�t� and �r̂�
2�t�. So the small-

p properties of the normalized Rouse-mode correlators
cp�t�=Cpp�t� /Cpp�0� can be deduced from the small-� behav-
ior of

ĉ��t� = �r̂�
2�t�/�r̂�

2�0� . �B21�

The equation of motion for ĉ��t� can be derived from Eq.
�B12�:

1

v2�t
2ĉ��t� + �̂�ĉ��t� + �

0

t

dt�m̂��t − t���t�ĉ��t�� = 0.

�B22�

The Laplace transform of this equation reads

−
1

v2z�1 + zĉ��z�� + �̂�ĉ��z� − m̂��z��1 + zĉ��z�� = 0,

�B23�

where the convention f�z�= i�0

dt eiztf�t� with Im z�0 is

adopted.
Let us consider liquid states, for which there is no noner-

godicity pole in the Laplace transform of correlators. �Non-
ergodicity parameters will be discussed below.� Then we

have, from the z→0 limit of Eq. �B23�, �̂�ĉ��z→0�= m̂��z
→0�. Retaining only the leading-order contribution in � for

�̂� and m̂�, one obtains for small �

ĉ��z → 0� =
�s

2

3�2m̂�=0�z → 0� . �B24�

Since ĉ��z→0� and m̂�=0�z→0� are proportional to their re-
laxation times, this implies that the relaxation time of ĉ�t�
�and hence of �r̂�

2�t�� is larger by a factor of 1 /�2��N / p�2

than that of m̂�=0�t�. This justifies the use of the Markovian
approximation, which has been adopted in Eq. �B16�. Since,
as discussed above, the relaxation time of m̂�=0�t� is dictated
by that of the coherent dynamics at microscopic wave vec-
tors, Eq. �B24� also implies the separation of the time scale
for ĉ�t� from that for the density fluctuations at the monomer
length scale.

We next turn our attention to nonergodicity parameters

f̂�= ĉ��t→
� and m̂�= m̂��t→
� in glass states. Since it
holds that limt→
 f�t�=−limz→0 zf�z�, one obtains from the

z→0 limit of Eq. �B23� f̂�= m̂� / �m̂�+ �̂��. Because of Eq.

�B15�, we have f̂�=1 in leading order for small �. This holds
also at the MCT critical point, so that the critical nonergod-

icity parameter for ĉ��t� is f̂�
c =1. Since ĉ��t��1, this also

implies that the critical amplitude for ĉ��t� is zero, ĥ�=0.
Therefore, our theory predicts that, for small mode indices or
in the N→
 limit, the critical nonergodicity parameter of the
Rouse-mode correlators is unity, and they do not exhibit the
MCT � dynamics �see Sec. IV D�.

Let us then consider the dynamics of ĉ��t� in the � re-
gime, which can be described by its � master curve �see Eq.
�60��. We consider the dynamics on the � relaxation time
scale t�� �see Eq. �57�� and write, e.g., ĉ��t�= c̃��t̃� with t̃
= t / t�� and ĉ��z�= t�� c̃��z̃� with z̃=zt�� , with a yet unspecified
function c̃�. It then follows from Eq. �B23� that
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−
1

v2

z̃

�t���2 �1 + z̃c̃��z̃�� + �̂�c̃��z̃� − m̃��z̃��1 + z̃c̃��z̃�� = 0.

�B25�

Now, the � scaling limit will be performed: t�� →
 for T

→Tc+, but with t̃ and z̃ fixed �11�. We thus obtain �̂�c̃��z̃�
− m̃��z̃��1+ z̃c̃��z̃��=0. Since c̃��t̃→0�= f̂�

c �11� and f̂�
c =1 for

small � as derived above, the inverse Laplace transform of
this equation yields

�̂�c̃��t̃� + �
0

t̃

dt̃�m̃��t̃ − t̃���t̃�c̃��t̃�� = 0. �B26�

Again, only the leading-order contribution in � for �̂� and
m̃� will be retained. With the same reasoning as presented
concerning Eq. �B24�, one obtains the time-scale separation
of the dynamics of c̃��t̃� from that of m̃�=0�t̃�. Therefore, the
Markovian approximation for Eq. �B26� is justified, leading
for small � to the exponential decay of the � master curve

c̃��t̃� = exp�− t̃/�̃�� , �B27�

with the relaxation time �̃�= �̃�s
2 /3kBT�2 ��̃=limT→Tc+� / t���

whose dependence on the mode index reads 1 /�2��N / p�2.
Thus, our theory in the N→
 limit yields the Rouse-model
result for the � master curves for the Rouse-mode correla-
tors.

4. Finite-N corrections

So far, we have derived the asymptotic solution of our
MCT equations in the limit of large degrees of polymeriza-
tion N, by retaining only the leading contribution in the ex-
pansion in the mode parameter. To find finite-N corrections,
one has to go beyond the leading order, but it is difficult to
explicitly work this out. On the other hand, it is obvious that
finite-N corrections lead to deviations from the asymptotic
�Rouse-model� results: when the normalized Rouse-mode
correlator cp�t� in the � regime is fitted via a Kohlrausch
function Ap exp�−�t /�p��p�, finite-N corrections lead to Ap

�1, �p�1, and deviations from �p� �N / p�2. Furthermore,
the monomer-averaged MSD does not exhibit the square-root
time dependence any longer.
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